Fast object detection in digital grayscale images
نویسندگان
چکیده
منابع مشابه
Self-Organizing Mixture Networks for Representation of Grayscale Digital Images
Sieci Kohonena (SOM) są najczęściej wykorzystywanym narzędziem w celu tzw. uczenia bez nadzoru. Dlatego też doczekały się wielu modyfikacji i adaptacji. Niniejsza praca poświęcona jest samoorganizującym się sieciom mieszankowym (SOMN), będącym istotnym rozwinięciem pierwotnej idei Kohonena. Zdolność SOMN do efektywnego uczenia się dowolnego rozkładu statystycznego ukazana została na przykładzie...
متن کاملImproved Detection of LSB Steganography in Grayscale Images
We consider methods for answering reliably the question of whether an image contains hidden data; the focus is on grayscale bitmap images and simple LSB steganography. Using a distributed computation network and a library of over 30,000 images we have been carefully evaluating the reliability of various steganalysis methods. The results suggest a number of improvements to the standard techiques...
متن کاملUsefulness of grayscale inverted images in addition to standard images in digital mammography
BACKGROUND Mammography is essential for early diagnosis of breast cancer, which is the most common type of cancer in females that is associated with a high mortality rate. We investigated whether evaluation of the grayscale inverted images of mammograms would aid in increasing the diagnostic sensitivity of the mammographic imaging technique. METHODS Our study included 636 mammograms of 159 wo...
متن کاملStaff-Line Detection on Grayscale Images with Pixel Classification
Staff-line detection is an important processing step in most Optical Music Recognition systems. Traditional methods make use of heuristic strategies based on image processing techniques with binary images. However, binarization is a complex process for which it is difficult to achieve perfect results—especially in ancient musical documents. In this paper we describe a staff-line detection appro...
متن کاملObject Detection in Natural Images
This thesis work is aiming for detecting and localizing different classes of objects in natural images. For this, we use an algorithm that first detects objects using Implicit Shape model (ISM), then, with patch based class segmentation, verifies the hypothesis. This algorithm is able to achieve a high detection rate on both rigid and articulated objects. The thesis also proposes a novel multi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.
سال: 2009
ISSN: 1407-009X
DOI: 10.2478/v10046-009-0026-5